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Abstract

The cryptanalysis of the Enigma cipher machine during World War II by British and American
codebreakers led by Alan Turing at Bletchley Park has been well-documented, and rightfully rec-
ognized as one of the supreme achievements of the human intellect. However, without the success-
ful cryptanalysis of an earlier version of Enigma by Polish codebreakers led by Marian Rejewski
in the 1930s, the work of the British and Americans in the 1940s might have taken much longer,
prolonging the war at the potential cost of untold additional lives. The mathematics integral to
the Polish cryptanalysis of Enigma involved some basic theory of permutations. The purpose of
this paper is to present an overview of these ideas and how they served to this effect. To assist in
demonstrating this, technology involving Maplets will be used.

1 Introduction

In 1918, German electrical engineer Arthur Scherbius applied for a patent for a mechanical cipher
machine. Later marketed commercially under the name Enigma, this machine was designed with
electric current running through revolving wired wheels, called rotors. Scherbius offered Enigma to
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the German military, who, after learning that their World War I ciphers had routinely been cracked,
adopted and used Enigma as their primary field cipher prior to and throughout World War II.

In the early 1930s, due to suspicions that Germany was seeking to rearm and reclaim territories lost
to Poland following World War I, the Poles began carefully monitoring German radio transmissions,
which were encrypted using Enigma. Unable to decrypt these messages, the Polish government re-
cruited mathematics students for the purpose of cryptanalyzing Enigma. Among these students were
Marian Rejewski, Jerzy Różycki, and Henryk Zygalski, who became employees of the Cipher Bureau
in Warsaw in the summer of 1932, coinciding with the beginning or their work on Enigma. Among
Rejewski, Różycki, and Zygalski, the most renowned is Rejewski, who in particular pioneered the
use of permutations in attacking Enigma.

In this paper, we will give an overview of the theory of permutations that Rejewski needed, and
characterize the various components of Enigma and reasons for Germany’s ill-fated confidence in its
security. We will also describe and demonstrate several aspects of the successful efforts by the Polish
codebreakers in cryptanalyzing the pre-war version of Enigma.

2 Permutations

Traditional collegiate abstract algebra courses often cover the basic theory of permutations, the details
of which can thus be found in many resources typically used as textbooks in such courses. Due to their
importance in the Polish method for cryptanalyzing Enigma, we will begin by giving an overview of
some of the theory of permutations and their representations involving cycles.

A permutation on a set Ω is a function σ : Ω → Ω that is both one-to-one and onto. In this paper
we will assume Ω is a finite set. As an example, if Ω = {A,B,C,D}, then one permutation on Ω is
the function σ with σ(A) = B, σ(B) = C, σ(C) = D, and σ(D) = A. Similarly, the function τ with
τ(A) = C, τ(B) = B, τ(C) = D, and τ(D) = A is a permutation on Ω. On the other hand, the function
µ with µ(A) = B, µ(B) = A, µ(C) = B, and µ(D) = D is not a permutation on Ω, since it is not
one-to-one.

Permutations can be represented most efficiently using cycle notation. A permutation on a finite
set {x1,x2, . . . ,xn} that maps x1 7→ x2 7→ x3 7→ · · · 7→ xn 7→ x1 is represented using cycle notation as
(x1x2 · · ·xn), with each element within the parentheses written to the right of the element from which
it maps, until the parentheses close when the element at the “end” (the far right) maps back to the one
at the “start” (the far left). So, for example, the permutation σ on Ω = {A,B,C,D} with σ(A) = B,
σ(B) = C, σ(C) = D, and σ(D) = A would be represented using cycle notation as σ = (ABCD).
The permutation τ on Ω with τ(A) = C, τ(B) = B, τ(C) = D, and τ(D) = A would be represented
as τ = (ACD)(B), which requires two “cycles,” one containing the single element B, since B maps
to itself under τ , and thus must be at both the start and end of the cycle in which it is contained.
Such cycles of “length” 1 are often not explicitly written in representations of permutations, since an
element’s absence from an expression can be interpreted as indicating that it maps to itself. Thus, τ

could also be expressed as τ = (ACD). In this paper though we will include cycles of length 1.
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Any pair of permutations σ and τ on a set Ω can be combined using the operation of function com-
position to form a new permutation, σ ◦ τ , on Ω, which is typically represented simply as στ . The
Polish codebreakers interpreted such compositions of permutations with the permutation listed on the
left applied first, so for any a ∈ Ω, the composition στ would be applied as (στ)(a) = τ(σ(a)).1 As
an example, for the pair of permutations σ = (ABCD) and τ = (ACD)(B) on Ω = {A,B,C,D}, we have
the following:

(στ)(A) = τ(σ(A)) = τ(B) = B,

(στ)(B) = τ(σ(B)) = τ(C) = D,

(στ)(C) = τ(σ(C)) = τ(D) = A,

(στ)(D) = τ(σ(D)) = τ(A) = C.

That is, στ = (ABCD)(ACD)(B) = (ABDC).

For a nonempty set Ω, the set of all permutations on Ω is a group with the operation of function
composition. This guarantees that every permutation on Ω will be invertible, meaning that for every
permutation σ on Ω, there must be a corresponding permutation σ−1 on Ω for which σσ−1 and σ−1σ

are both the identity permutation (which maps every possible input to itself). To find the inverse of
a cycle, we must only reverse its elements. For example, for the permutation σ = (ABCD) on the
set Ω = {A,B,C,D}, the inverse is the permutation σ−1 = (DCBA), or, equivalently, using a common
convention of moving the first element in some understood order (e.g., alphabetical) to the start of a
cycle, σ−1 = (ADCB).

Similarly, for a permutation that requires more than one cycle to express in cycle notation, if the
cycles are “disjoint” (i.e., if none of the elements appears in more than one of the cycles), then
to find the inverse we must only reverse the elements in each of the cycles. For example, for the
permutation σ = (ADE)(BCG)(F) on Ω = {A,B,C,D,E,F,G}, the inverse is σ−1 = (EDA)(GCB)(F),
or, equivalently, σ−1 = (AED)(BGC)(F).

A pair of permutations σ and τ on a set Ω are said to be conjugate if there is a permutation ρ on Ω for
which ρσρ−1 = τ . For example, the permutations σ = (ADE)(BCG)(F) and τ = (BCD)(GAF)(E) on
Ω = {A,B,C,D,E,F,G} are conjugate, since for the permutation ρ = (ACDEFGB), it can be verified
that ρσρ−1 = τ .

The type of a permutation is a list of the lengths of the cycles in nonincreasing numerical order in
its representation as a single cycle or composition of disjoint cycles. For example, the permutations
σ = (ADE)(BCG)(F) and τ = (BCD)(GAF)(E) on Ω = {A,B,C,D,E,F,G} are both of type (3,3,1),
since as compositions of disjoint cycles both require two cycles of length 3 and one cycle of length
1. Similarly, the permutation ρ = (ACDEFGB) on Ω is of type (7). The fact that the permutations σ

and τ , which are conjugate, are also of the same type is not a coincidence, but rather is guaranteed
by the following theorem, which turns out to be fundamental to the Polish method for cryptanalyzing
Enigma.
1Many resources interpret compositions of permutations with the permutation listed on the right applied first, so στ would
be applied as (στ)(a) = σ(τ(a)). We will use the interpretation of the Polish codebreakers though, with the permutation
listed on the left applied first.
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Theorem 2.1 Conjugate permutations must be of the same type.

Proof. Suppose σ and τ are conjugate permutations, with ρσρ−1 = τ , and let (a1a2 · · ·ak) be a cycle
for σ , so σ(a j) = a j+1 for j = 1,2, . . . ,k−1, and σ(ak) = a1. For any j = 1,2, . . . ,k−1, note that

τ(ρ−1(a j)) = (ρσρ
−1)(ρ−1(a j)) = ρ

−1(σ(ρ(ρ−1(a j)))) = ρ
−1(σ(a j)) = ρ

−1(a j+1).

Similarly, τ(ρ−1(ak)) = ρ−1(a1), and so we see that (ρ−1(a1)ρ
−1(a2) · · ·ρ−1(ak)) is a cycle for τ .

Thus, σ and τ must be of the same type. ■

The proof of Theorem 2.1 shows that for permutations σ and ρ , to find the conjugate ρσρ−1, we
must only translate the elements in the cycles of σ by ρ−1. As an example, for the permutations
σ = (ADE)(BCG)(F) and ρ = (ACDEFGB) on Ω = {A,B,C,D,E,F,G},

ρσρ
−1 = (ρ−1(A)ρ−1(D)ρ−1(E))(ρ−1(B)ρ−1(C)ρ−1(G))(ρ−1(F)) = (BCD)(GAF)(E).

Finally, for a pair of permutations σ and τ on a set Ω, the inverse of στ will be (στ)−1 = τ−1σ−1,
since both (στ)(τ−1σ−1) = σ(ττ−1)σ−1 = σσ−1 and (τ−1σ−1)(στ) = τ−1(σ−1σ)τ = τ−1τ will
be the identity permutation. Since (στ)−1 = τ−1σ−1, we see that inverses of compositions of permu-
tations satisfy the “reverse-order” law in mathematics. Notably, inverting a conjugate ρσρ−1 yields
(ρσρ−1)−1 = (ρ−1)−1σ−1ρ−1 = ρσ−1ρ−1. That is, to invert a conjugate, we must only invert the
permutation in the middle of the expression.

3 Description of Enigma

Enigmas contained various components, each contributing in their own way to the overall security of
the machine. Figure 1 shows two photos of an Enigma with several of these components labeled.

Figure 1: Photos of an Enigma with components labeled and the plugboard shown.
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To encrypt or decrypt a letter using an Enigma, a key labeled with the letter was pressed on a keyboard,
which launched electric current designating the letter from the keyboard. The current traveled first
to the plugboard, where it changed to designate a different letter if a pair of sockets representing the
input letter were connected by a cable to a pair of sockets representing a different letter. The current
then passed right-to-left through a series of wheels, called rotors, three in the version of Enigma faced
by the Poles, each of which could change the current to designate a different letter. The current then
passed through another wheel called the reflector, which definitely changed the current to designate a
different letter, back through the rotors but from left to right, back through the plugboard, and finally
to the lampboard, where it lit a small bulb indicating the encrypted or decrypted letter.

The plugboard resembled a miniature old telephone switchboard, and was physically situated in the
front of the machine. It had 26 pairs of sockets, one pair to represent each letter in the alphabet. Each
socket pair could either be left open or connected to another socket pair by a short cable. If the socket
pairs representing two letters were connected by a cable, then current designating either letter would
change at the plugboard to designate the other letter. If the socket pair representing a letter was left
open in the plugboard, then current designating that letter would leave the plugboard still designating
the same letter.

The machine could be operated using anywhere from 0 to 13 plugboard cables. Varying the number
of cables would have obviously maximized security, however standard German operating procedure
was to use a fixed number of cables. With a fixed number of cables, we show in [3] that 11 would
have maximized security, but for the version of Enigma faced by the Poles, 6 were always used. We
actually show in [3] that for any p = 1,2, . . . ,13, the number of ways to connect 2p socket pairs using
p cables is given by

Np =
26!

(2p)!(26−2p)!
· (2p−1) · (2p−3) · · ·1.

Using this formula, we find that the number of different ways the plugboard could be configured in
the version of Enigma faced by the Poles is N6 = 100,391,791,500.

Three rotors, each a circular disk about the size of a hockey puck, were lined up side-by-side in the
back of the machine. The German Navy later employed a version of Enigma in which four rotors
were used at the same time, but in the version of Enigma faced by the Poles, three were used.

We will call the flat sides of a rotor the right and left sides, since they could only be placed in the
machine standing on end with each side facing in a particular direction. Both flat sides of a rotor
contained 26 contact points, one to represent each letter in the alphabet, in alphabetical order around
both sides of the rotor clockwise (when it was viewed from the right). Each contact on the right side
of a rotor was connected to a contact on the left side by an electrical wire, although contacts that were
connected did not usually represent the same letter. The idea was that current could enter a rotor on
one side at a contact position designating one letter, and pass through and exit the rotor on the other
side at a contact position designating a different letter.

There are an incredibly large number of ways in which the contacts within a rotor could have been
connected (26! ≈ 4.03×1026, to be precise), but because they had to be hard-wired, rotors with only a
very small number of different wirings were ever actually produced. Rotors were eventually produced
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with ten different wirings, but for the version of Enigma faced by the Poles, rotors with only three
different wirings were available. While multiple rotors with identical wirings could have been used
in the machine at the same time, in the version of Enigma faced by the Poles, exactly one rotor with
each of the three different wirings available at the time was always used. These rotors could, however,
be placed in the machine from left to right in any of 3! = 6 possible orders.

One of the most remarkable achievements of the Polish codebreakers was that they were able to
identify these three different rotor wirings from intercepted messages alone, without first physically
handling a rotor. A detailed discussion of how they accomplished this can be found in [2]. These
three different wirings are most easily expressed as permutations, taking as input the letter designated
by current as it enters a rotor on the right, and giving as output the letter designated by the current as
it exits the rotor on the left. In this manner, the wirings of the rotors, which we will denote as R1, R2,
and R3, can be expressed using cycle notation as follows.

R1 = (AELTPHQXRU)(BKNW)(CMOY)(DFG)(IV)(JZ)(S) (1)
R2 = (A)(BJ)(CDKLHUP)(ESZ)(FIXVYOMW)(GR)(NT)(Q) (2)
R3 = (ABDHPEJT)(CFLVMZOYQIRWUKXSG)(N) (3)

For example, current designating A and entering R1 on the right would exit R1 on the left designating
E, current designating J and entering R2 on the right would exit R2 on the left designating B, and cur-
rent designating N and entering R3 on the right would exit R3 on the left still designating N. Note also
that the permutation R1 is of type (10,4,4,3,2,2,1), the permutation R2 is of type (8,7,3,2,2,2,1,1),
and R3 is of type (17,8,1).

Rotors were called “rotors” because they rotated inside the machine during its operation. Even before
this though, as the machine was being set up, each rotor could be rotated into any of 26 distinct
positions before being placed into the machine. This gave 263 = 17,576 unique positions into which
all three rotors could be rotated before being placed into the machine.

To assist Enigma operators with orienting rotors correctly, the letters A–Z (or sometimes the numbers
01–26) were etched into a ring around the outside of each rotor, listed in order clockwise (when the
rotor was viewed from the right). For each of the three rotor slots, a small window was cut into the
top of the machine to reveal the letter (or number) at a particular location on the ring. We will call
this letter the window letter. The etched ring around the outside of each rotor was movable, and could
itself be rotated into any of 26 distinct positions while the wired part of the rotor was held stationary.
This was a complication, because rotating the ring while holding the wired part of a rotor stationary
would move the window letter but not the wiring. A number from 1 to 26 called the ring setting
indicated the position of the ring on a rotor.

The 26 possible ring settings for each rotor gave 263 = 17,576 unique ring settings for all three rotors
before they were placed into the machine. When counting the number of ways an Enigma could be
set up prior to its operation, it is tempting to ignore the number of possible ring settings, since the
movable rings did not change the fact that there were only 26 different wires for current to follow
through a rotor. However, the number of possible ring settings cannot be ignored, since the rotation
of the rotors during the operation of the machine depended only on the ring, not the full rotor. More
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specifically, encrypting and decrypting messages using an Enigma was done one letter at a time,
and each time the key for an input letter was pressed on the keyboard, the rightmost rotor would
immediately (before current reached the rotors) rotate one position counterclockwise (when the rotor
was viewed from the right). In addition, a notch was cut out from the ring around each rotor, and for
the middle and rightmost rotors, when this notch was in one particular position in the rotor slot, if
the rotor rotated one position counterclockwise it would cause the rotor to its left to also rotate one
position counterclockwise.2

Combining the 3! = 6 possible rotor orders, 263 = 17,576 unique positions into which all three rotors
could be rotated, and 263 = 17,576 unique ring settings for all three rotors, we find that the total
number of different ways that rotors could be configured in the version of Enigma faced by the Poles
is 6 ·17,576 ·17,576 = 1,853,494,656.

The reflector sat to the left of the rotors, and was also a circular disk with 26 contact points, one to
represent each letter in the alphabet. The reflector only had contacts on its right side though, which
were always wired to each other in 13 pairs. After its right-to-left journey through the rotors, current
designating a letter would enter the reflector at one of its contact points, travel along one of the wires,
and then exit the reflector at a different contact point, designating a different letter, to begin a left-to-
right journey back through the rotors.

As with a rotor, there are a very large number of ways in which the contacts within a reflector could
have been connected (25 ·23 ·21 · · ·1 = 7,905,853,580,625, to be precise), but because they also had
to be hard-wired, reflectors with only a very small number of different wirings were ever produced.
Reflectors were eventually produced with five different wirings, but for the version of Enigma faced
by the Poles, reflectors with only a single distinct wiring were available. This reflector was called
reflector A, and it permuted the letters designated by current according to the following permutation.

A = (AE)(BJ)(CM)(DZ)(FL)(GY)(HX)(IV)(KW)(NR)(OQ)(PU)(ST) (4)

For example, current entering this reflector designating D would exit the reflector designating Z, and
vice versa. Also, although an Enigma could be operated with the reflector rotated into any of 26
distinct positions before being placed into the machine, reflectors were always placed into Enigma
machines in one specific position, and once in the machine did not move. Thus, the number of
different ways that the reflector could be configured in the version of Enigma faced by the Poles is 1.

With 100,391,791,500 ways to configure the plugboard, 1,853,494,656 ways to configure the rotors,
and just 1 way to configure the reflector, the number of different ways that the full machine could be
configured in the version of Enigma faced by the Poles is the following number.

100,391,791,500 ·1,853,494,656 ·1 = 186,075,649,051,516,224,000 (5)

This number, which is approximately 1.86×1020, or more than 186 quintillion, was much too large
for a brute force attack on Enigma to have been possible at the time. However, through the work of
Rejewski, Różycki, and Zygalski, this astronomical number was overcome.
2This means we could technically reduce the number of possible ring settings under consideration by a factor of 26, since
the notch on the leftmost rotor was irrelevant, as there was no rotor to its left for it to influence. We will describe later
though how the Poles were actually able to nullify the effect of all the ring settings altogether.
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4 Operation of Enigma

Although all three of the rotors in an Enigma of the version faced by the Poles could rotate during the
encryption of a message, for the rest of this paper we will assume that only the rightmost rotor rotated.
This obviously significantly simplifies the machine, but it is a reasonable assumption, since the Polish
method for cryptanalyzing Enigma would fail if any rotor except the rightmost rotated during the
formation of the portion of a ciphertext used in determining the configuration of the machine.

Consider now an Enigma of the version faced by the Poles, with wired plugboard pairs A↔ Q, I↔ K,
J↔ T, M↔ Z, O↔ S, and X↔ Y, and rotors in the left-to-right order R3, R1, R2, with corresponding
ring settings 14, 23, 5. Suppose also that the rotors are rotated into the positions for which the initial
left-to-right window letters are AIM (called the ground setting of the machine). To use this machine
to encrypt E, we would press the key labeled E on the keyboard. This would cause the rightmost rotor
R2 to rotate one position counterclockwise (before current reached the rotors), resulting in the new
left-to-right window letters AIN, and send current initially designating E on a journey through the
machine which is illustrated in Figure 2.

Figure 2: Diagram of current flow through an Enigma.
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The path followed by the current through the machine illustrated in Figure 2 can be described explic-
itly using the language and terminology of permutations as follows.

• Current designating E travels first to the plugboard, which can be represented as the permutation
P = (AQ)(B)(C)(D)(E)(F)(G)(H)(IK)(JT)(L)(MZ)(N)(OS)(P)(R)(U)(V)(W)(XY). Since this
permutation maps E to itself, the current leaves the plugboard still designating E.

• Current designating E travels next to the rightmost rotor R2, which has ring setting 5 and win-
dow letter N. The effect of the ring setting and window letter can be combined in general
into a single number from 0 to 25 called the rotor offset, which indicates the number of posi-
tions the wiring in the rotor is rotated from its “standard” position (for which this rotor would
transform the letter designated by current exactly as in the expression for R2 given in (2))
to reach its actual position. In particular, with window letter N, which is the 14th letter in
the alphabet, and ring setting 5, the rotor offset is 14 − 5 = 9, meaning that the wiring in
the rotor is rotated 9 positions from its standard position to reach its actual position, and that
current designating any letter would actually follow the wire through the rotor intended for
the letter 9 positions later in the alphabet. This effect of the rotor offset can be represented
as the permutation O9 = (AJSBKTCLUDMVENWFOXGPYHQZIR), in which each letter is fol-
lowed by the letter 9 positions later in the alphabet, and the action of current entering and
passing through the rotor can be represented by the permutation O9R2. However, because the
current is actually designating the letter 9 positions earlier in the alphabet, the action of the
current leaving the rotor also requires an application of the inverse O−1

9 . That is, the jour-
ney into, through, and out of the rightmost rotor can be represented in full by the permutation
R = O9R2O−1

9 = (AS)(BCYLGTU)(DNWZOMPF)(EK)(H)(IX)(JQV)(R). Since this permuta-
tion maps E to K, the current leaves the rightmost rotor designating K.

• Current designating K travels next to the middle rotor R1, with ring setting 23 and window letter
I, which combine to give the rotor offset 9− 23 = −14, or 12 when adjusted by adding 26 to
make the rotor offset be nonnegative. With O12 = (AMYKWIUGSEQCO)(BNZLXJVHTFRDP),
and the expression for R1 given in (1), the journey into, through, and out of the middle rotor
can be represented by M = O12R1O−1

12 = (ACMQ)(BKPY)(DVELFIOSZH)(G)(JW)(NX)(RTU).
Since this permutation maps K to P, the current leaves the middle rotor designating P.

• Current designating P travels next to the leftmost rotor R3, with ring setting 14 and window let-
ter A, which combine to give rotor offset 1−14=−13, or 13 when adjusted by adding 26. With
O13 = (AN)(BO)(CP)(DQ)(ER)(FS)(GT)(HU)(IV)(JW)(KX)(LY)(MZ), and the expression for
R3 given in (3), the journey into, through, and out of the leftmost rotor can be represented by
L = O13R3O−1

13 = (A)(BLDVEJHXKFTPSYIZM)(CRWGNOQU). Since this permutation maps P
to S, the current leaves the leftmost rotor designating S.

• Current designating S travels next to reflector A, whose expression as a permutation is given in
(4). Since this permutation maps S to T, the current leaves the reflector designating T.

• Current designating T travels next back to the leftmost rotor, but since it is now moving in
the opposite direction, it will now follow the path through the rotor indicated by the per-
mutation L−1 = (O13R3O−1

13 )
−1 = O13R−1

3 O−1
13 . That is, the journey into, through, and out
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of the leftmost rotor in this opposite direction can be represented in full by the permuta-
tion L−1 =O13R−1

3 O−1
13 = (A)(BMZIYSPTFKXHJEVDL)(CUQONGWR). Since this permutation

maps T to F, the current leaves the leftmost rotor in this direction designating F.

• Current designating F travels next back to the middle rotor. The journey into, through, and
out of the middle rotor in this opposite direction can be represented in full by the permutation
M−1 = O12R−1

1 O−1
12 = (AQMC)(BYPK)(DHZSOIFLEV)(G)(JW)(NX)(RUT). Since this permu-

tation maps F to L, the current leaves the middle rotor in this direction designating L.

• Current designating L travels next back to the rightmost rotor. The journey into, through, and
out of the rightmost rotor in this opposite direction can be represented in full by the permu-
tation R−1 = O9R−1

2 O−1
9 = (AS)(BUTGLYC)(DFPMOZWN)(EK)(H)(IX)(JVQ)(R). Since this

permutation maps L to Y, the current leaves the rightmost rotor in this direction designating Y.

• Current designating Y travels next back to the plugboard, which maps Y to X. The current thus
leaves the plugboard designating X, headed on its way to the lampboard, whose bulb labeled X
it lights.

The full journey through the machine can be expressed as PRMLAL−1M−1R−1P−1, or, equivalently,
(PRML)A(PRML)−1. This shows that as permutations, the full journey through the machine is con-
jugate to the reflector. By Theorem 2.1, we know then that the full journey through the machine is
a permutation of the same type as the reflector.3 This guarantees that the encryption and decryption
processes were reciprocal, and also that it was not possible for a letter to encrypt as itself. These facts
were also true of the more complex versions of Enigma the Germans used during World War II, and
were exploited by the British and American codebreakers led by Alan Turing at Bletchley Park in
their own successful cryptanalysis of Enigma.

We should also note that after encrypting E as described in this section, if we wished to encrypt a
second letter, pressing its key on the keyboard would cause the rightmost rotor to rotate another po-
sition counterclockwise. This would result in the new rightmost window letter O, and new rightmost
rotor offset 10. Then, with O10 = (AKUEOYISCMWGQ)(BLVFPZJTDNXHR),4 for the encryption of
the second letter, the journey into, through, and out of the rightmost rotor the first time it was visited
would be represented by O10R2O−1

10 = (ABXKFST)(CMVYNLOE)(DJ)(G)(HW)(IPU)(Q)(RZ).

We will now demonstrate a Maplet5 written by the authors that simulates the operations of encryption
and decryption with an Enigma machine. This Maplet is available for download at the link labeled
[S1] in Section 7. Enigma operators carried a codebook that indicated the common plugboard pairs,
rotor order, ring settings, and ground setting for each day. However, given the volume of messages that
were sent, and the fact that each one on any given day would be encrypted using the same codebook
settings, to decrease vulnerability to frequency analysis, Enigma operators were instructed to choose

3Incidentally, for the example that is provided in this section, the full journey through the machine turns out to be
PRMLAL−1M−1R−1P−1 = (AG)(BO)(CU)(DK)(EX)(FV)(HM)(IY)(JP)(LQ)(NW)(RS)(TZ).

4This could be found directly, or, with O1 = (ABCDEFGHIJKLMNOPQRSTUVWXYZ), as O10 = O1O9.
5A Maplet is like an applet, but uses (and requires) the engine of the computer algebra system Maple, and is written using
Maple functions and syntax.
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a separate, personal ground setting for each message they sent. To avoid confusion (with the ground
setting given in the codebook), we will call this the message setting. When encrypting a message, an
operator was to first configure their machine as directed by the codebook, including its ground setting,
and use this configuration to encrypt the letters in their message setting, repeated to form a six-letter
sequence so that transmission errors could be identified. The operator was then to manually turn the
rotors so that their message setting was showing in the windows, and use this configuration to encrypt
their actual message. They were then to transmit the six letters that resulted from encrypting their
repeated message setting followed by the letters in their encrypted actual message.

An Enigma operator in receipt of an encrypted transmission was to first configure their machine
as directed by the codebook, and use this configuration to decrypt the first six letters in the received
transmission. This would reveal the message setting that had been used to encrypt the actual message.
The operator was then to manually turn the rotors so that this message setting was showing in the
windows, and use this configuration to decrypt the remainder of the transmission.

As an example, suppose an Enigma operator wishing to encrypt ENIGMAXISXWORKING chose mes-
sage setting AIM, and found, for daily settings in the codebook, plugboard pairs A ↔ Q, I ↔ K,
J↔ T, M↔ Z, O↔ S, and X↔ Y, rotor order R3, R1, R2, ring settings 14, 23, 5, and ground setting
TAG. The operator would first configure their machine as directed by the codebook, and encrypt
AIMAIM. The result of using the Maplet to do this is shown in Figure 3.

Figure 3: Using the Maplet to encrypt a message setting.

The operator would then turn their rotors so AIM was showing in the windows, and encrypt their
actual message. This would result in XYLFWMOJLVOQOBMAU, and thus the operator would transmit
the full ciphertext RBCPLWXYLFWMOJLVOQOBMAU.

An Enigma operator in receipt of this would decrypt the message in two steps. They would first
configure their machine as directed by the codebook (which would match the codebook settings used
by the originator of the message), and decrypt RBCPLW. The result of this would be AIMAIM. They
would then turn their rotors so AIM was showing in the windows, and decrypt the remainder of the
transmission. The result of using the Maplet to do this is shown in Figure 4.
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Figure 4: Using the Maplet to decrypt a message.

5 The Polish Cryptanalysis of Enigma

5.1 Analyzing Message Settings

The Polish codebreakers, working with the knowledge that the first six letters in intercepted trans-
missions resulted from encrypting the three letters in originators’ message settings repeated, cleverly
exploited this fact to discover the message settings. To see how they did this, consider the first six
letters XXGCJQ in an intercepted transmission, formed using Enigma full-machine permutations la-
beled in order as P1–P6, applied to the repeated message setting AIMAIM, and with ground setting
TAG. This portion of encryption can be summarized as follows.

Permutation: P1 P2 P3 P4 P5 P6
Plaintext: A I M A I M

Window Letters: TAH TAI TAJ TAK TAL TAM
Ciphertext: X X G C J Q

Of course, at this point the Poles would not have known the actual plaintext or window letters. How-
ever, they did know the first and fourth plaintext letters had to match, from which they could glean
some important information. In particular, due to the reciprocal nature of the machine, the letter to
which P1 mapped X would have to be mapped by P4 to C. That is, P4(P1(X)) = C, or, equivalently,
(P1P4)(X) = C. Also, because they knew the second and fifth plaintext letters had to match, they
knew (P2P5)(X) = J. Finally, because they knew the third and sixth plaintext letters had to match,
they knew (P3P6)(G) = Q.

Building upon this idea, the Poles noticed certain patterns that occurred within the first six letters
of intercepted transmissions originating from multiple Enigma operators all on the same day. For
instance, consider the following list of 68 such examples.
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ACFKVE JAKJEB SHDMZU HEGNYQ HOONPH AXAKJG BHLQZA BNUQDO
BHGQZQ KHMFZI TAGYEQ MFBGFN BPKQMB AYAKTG BHMQZI AXWKJT
CHHZZY LHHIZY UHFPZE TGCYGW XQVCIM VZHBKY BMNQXP CHXZZX
DHBEZN MEJGYC VDJBQC AIAKUG PRITND QSCHHW BMOQXH GHYOZZ
EHOLZH NHHVZY WHBWZN XJECWV BSJQHC ATDKLU GNPODL BNZQDS
FAAAEG OAJSEC XBNCAP AKAKCG ATAKLG BHHQZY AIQKUJ
GHGOZQ PAJTEC YHDUZU MLJGBC HUUNRO AXIKJD AIRKUR
HCWNVT QHGHZQ ZNAXDG BMBQXN AVKKSB BMJQXC BSSQHF
IHDRZU RHZDZS ODNSQP BNJQDC TWJYOC AIKKUB CSTZHK

(6)

From the highlighted letters, for the permutations P1 and P4 resulting from the codebook settings
on that particular day, we see that (P1P4)(A) = K, while (P1P4)(K) = F, and (P1P4)(F) = A. This
means that (AKF) is a cycle in the permutation P1P4. Similarly, using the letters in the first and
fourth positions of these 68 six-letter sequences, we can see that (BQHNV) is a cycle in P1P4, and in
fact that in full, P1P4 = (AKF)(BQHNV)(CZX)(DELIR)(GOSM)(J)(PTYU)(W). In the same manner,
using the letters in the second and fifth positions of these 68 six-letter sequences, we can see that
P2P5 = (AEYTLB)(CVSHZK)(DQIURN)(F)(G)(JWOPMX), and using the letters in the third and sixth
positions, we can see that P3P6 = (AGQJCWTKBNPL)(DUOHYZSFEVMI)(R)(X). Notably, the per-
mutation P1P4 is of type (5,5,4,4,3,3,1,1), the permutation P2P5 is of type (6,6,6,6,1,1), and P3P6
is of type (12,12,1,1).

A couple of other insights dramatically reduced the number of possible machine configurations the
Poles needed to consider. One was that since the expression PRMLAL−1M−1R−1P−1 summarizing
the full journey through the machine can also be viewed as P(RMLAL−1M−1R−1)P−1, the full journey
through the machine is conjugate to the part of this journey that occurs between visits to the plugboard.
By Theorem 2.1, we know then that the full journey through the machine is a permutation of the same
type as the part of this journey that occurs between visits to the plugboard. That is, the plugboard
had no effect on the cycle structure of the permutation representing the full machine. It is not hard to
show that the plugboard would similarly have no effect on the cycle structure of the composition of
two such permutations. As a result, ignoring the plugboard would not change the cycle structures of
P1P4, P2P5, and P3P6 from what we observed them to be previously. Ignoring the plugboard though
does significantly reduce the number of possible full machine configurations from its theoretical value
given in (5) by the factor 100,391,791,500 that was contributed by the plugboard to this value.

Another insight was that since the Poles’ method would fail if any rotor except the rightmost ro-
tated during the formation of the portion of a ciphertext used in determining the configuration of the
machine, and the rightmost rotor rotated in a predictable manner, they could simply ignore the ring
settings. By assuming fixed common ring settings, then with regard to the rotors, the Poles only
needed to consider the 263 = 17,576 possible ground settings and 3! = 6 possible rotor orders. This
gives only 6 ·17,576 = 105,456 different ways that rotors could be configured, significantly less than
the factor 1,853,494,656 that was contributed by the rotors to the theoretical value given in (5).

The Poles determined and recorded the cycle structures of P1P4, P2P5, and P3P6 for each of the 105,456
configurations they needed to consider. To do this, they built a machine called a cyclometer, which
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consisted of two sets of three rotors with the reflector in between, and which they used to simulate
the between-plugboard-visits operation of Enigma. When running the cyclometer, the Poles arranged
both sets of rotors in one of the six possible orders, and moved the first set to reflect a combination
of window letters (e.g., AIM) and the second set the combination with the rightmost rotor moved
three positions forward (e.g., AIP). Current designating an input letter was then sent through the
cyclometer, with the output letter recorded and itself put back into the machine to obtain a second
output. This process was repeated until the original input was obtained as output, thus revealing a
cycle in the permutation for the rotor order and window letters with which they started. Then, they
would input a letter not in this cycle into the cyclometer and repeat the process, continuing to do
this until every letter had occurred in a cycle. This would finally give the full representation of P1P4.
They would then repeat the entire process with the window letters in the cyclometer positioned for
the combinations with the rightmost rotors moved one position forward (e.g., AIN and AIQ) to find
the representation of P2P5, and then repeat the entire process a final time with the window letters set
for the combinations with the rightmost rotors moved one more position forward (e.g., AIO and AIR)
to find the representation of P3P6.

The Poles completed this process for each of the 105,456 configurations they needed to consider, and
recorded the results for P1P4, P2P5, and P3P6 in a (very large) table. Although no original copies of
this table are known to still be in existence, we do know how the table was organized, specifically that
permutations of the same type were grouped together, and listed alongside the window letters that
were used on the first set of rotors in the cyclometer.

To demonstrate how this table could be used, consider Table 1, which gives a few samples of the
cycles in the permutations of types (5,5,4,4,3,3,1,1), (6,6,6,6,1,1), and (12,12,1,1) that result
with the rotor order R3, R1, R2 and assumed ring settings 1, 1, 1.

Table 1: Sample permutation types for rotor order R3, R1, R2 and ring settings 1, 1, 1.

Permutation Type Window Letters Cycles
(5,5,4,4,3,3,1,1) GDQ (HKLQJ)(MXSYW)(BGDZ)(ENOV)(AFT)(CUI)(P)(R)
(5,5,4,4,3,3,1,1) GED (BIRPE)(HNVLQ)(DJXU)(GSOM)(AKZ)(CFY)(T)(W)

...
...

...
(5,5,4,4,3,3,1,1) HPN (CORLU)(DSHGZ)(BKWF)(EMNP)(AXT)(IYQ)(J)(V)
(5,5,4,4,3,3,1,1) HYR (ATXVB)(LOYMQ)(CRKJ)(EUNS)(DIF)(GWP)(H)(Z)
(6,6,6,6,1,1) FYY (ABFWNQ)(CHZOER)(DLTKGI)(PVUSXY)(J)(M)
(6,6,6,6,1,1) GEE (AEXJBL)(CVOHFK)(DMYTWS)(IURNPQ)(G)(Z)

...
...

...
(6,6,6,6,1,1) HYJ (AUBNOY)(CHIFKQ)(DLJTPE)(RZXWVS)(G)(M)
(6,6,6,6,1,1) HYS (AOSVIQ)(BMPUWN)(CRHFDT)(EYJLKZ)(G)(X)
(12,12,1,1) GEC (AKZUWGQRHJST)(CXIENFLYVMOD)(B)(P)
(12,12,1,1) GEF (AGQTCWJKLNDB)(EVMIPUSHXFOZ)(R)(Y)

...
...

...
(12,12,1,1) HXU (ANFHYXJRKLGT)(BPZEOVUQIMWC)(D)(S)
(12,12,1,1) HYT (BNPCWEOFXQMI)(DSUJRVTLKZYH)(A)(G)
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In attacking the example given at the start of this section, we would first be looking for permutations
in the full table with consecutive window letter settings that match the types of the permutations P1P4,
P2P5, and P3P6 we discovered previously. Two candidates emerge from the small portion of the full
table given in Table 1, the trio with consecutive window letter settings GED, GEE, and GEF, and the
trio with consecutive window letter settings HYR, HYS, and HYT. Between these two candidates,
we would then want the one whose cycles can be arranged to match up better with the cycles in P1P4,
P2P5, and P3P6. To determine this, consider the following comparisons, with the cycles arranged to
have common lengths and with the matching letters between corresponding cycles maximized.

P1P4: (AKF)(BQHNV)(CZX)(DELIR)(GOSM)(J)(PTYU)(W)
GED: (AKZ)(LQHNV)(CFY)(PEBIR)(GSOM)(T)(DJXU)(W)

P2P5: (AEYTLB)(CVSHZK)(DQIURN)(F)(G)(JWOPMX)
GEE: (AEXJBL)(CVOHFK)(PQIURN)(Z)(G)(TWSDMY)

P3P6: (AGQJCWTKBNPL)(DUOHYZSFEVMI)(R)(X)
GEF: (AGQTCWJKLNDB)(PUSHXFOZEVMI)(R)(Y)

P1P4: (AKF)(BQHNV)(CZX)(DELIR)(GOSM)(J)(PTYU)(W)
HYR: (DIF)(BATXV)(GWP)(MQLOY)(UNSE)(H)(CRKJ)(Z)

P2P5: (AEYTLB)(CVSHZK)(DQIURN)(F)(G)(JWOPMX)
HYS: (ZEYJLK)(CRHFDT)(BMPUWN)(X)(G)(QAOSVI)

P3P6: (AGQJCWTKBNPL)(DUOHYZSFEVMI)(R)(X)
HYT: (WEOFXQMIBNPC)(KZYHDSUJRVTL)(A)(G)

The cycles for GED, GEE, and GEF clearly match up better with the cycles in P1P4, P2P5, and P3P6
than do the cycles for HYR, HYS, and HYT. Thus, we would proceed assuming the ground setting
that produced the six ciphertext letters in the example given at the start of this section was GEC, so
that when the key labeled with the first plaintext letter on the keyboard was pressed, the rightmost
window letter would rotate to D before current reached the rightmost rotor.

The reason why the cycles for GED, GEE, and GEF do not identically match the cycles in the per-
mutations P1P4, P2P5, and P3P6 is that the latter were formed with the plugboard pairs connected,
while the former were not. However, our comparisons between the cycles for GED, GEE, and GEF
and those in P1P4, P2P5, and P3P6 actually reveal these plugboard pairs. Specifically, note that in our
comparisons between P1P4 and GED, P2P5 and GEE, and P3P6 and GEF, the places where these com-
parisons fail to match all indicate the same six plugboard connections: B↔ L, D↔ P, F↔ Z, J↔ T,
O↔ S, and X↔ Y.

We will now demonstrate a Maplet written by the authors that can be used to form the permutations
P1P4, P2P5, and P3P6 from the sample intercepts given in (6), and then search a full table of the type
created by the Poles in which they recorded results for each of the 105,456 configurations they needed
to consider, looking for permutations with consecutive window letter settings that match the types of
P1P4, P2P5, and P3P6. This Maplet is available for download at the link labeled [S2] in Section 7. We
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begin by typing the sample intercepts given in (6) in a textbox at the top of the Maplet window, and
clicking Check Message Settings to ensure that the intercepts provide enough information to give
permutations P1P4, P2P5, and P3P6 that include all alphabet letters.6 Next, we click Compute Cycle
Structure to see the permutation types and cycles for P1P4, P2P5, and P3P6, and click Check Table to
search the full table, looking for permutations with consecutive window letter settings that match the
types of P1P4, P2P5, and P3P6.

The window to the right of Check Table then shows the combinations of rotor orders and ground
settings from the full table for which permutations with consecutive window letter settings match
the types of P1P4, P2P5, and P3P6. The numbers to the right of the ground settings in this window
measure how well the letters between corresponding cycles match, with a number significantly higher
than the rest indicating the likely best option. Since this number is highest for the ground setting
GEC, we next type the rotor order and this ground setting in the given text boxes, and click Compare
Plugboard Cycle Structure. This causes the cycles in P1P4, P2P5, and P3P6 and those from the table
to be displayed together in the window, as shown in Figure 5.

Figure 5: Using the Maplet to analyze encrypted message settings.

Seeing the cycles in P1P4, P2P5, and P3P6 and those from the table displayed together in the window as
in Figure 5 enables us to identify the plugboard connections that would make these cycles identically
match. Typing these plugboard connections in the Enter Plugboard Partners text box and again
clicking Compare Plugboard Cycle Structure updates the cycles in the window, confirming when
the cycles identically match that all plugboard connections have been identified correctly. Finally,
6Recall that this particular example involves 68 intercepts. Rejewski claimed that sometimes as many as 80 intercepts
were necessary before the permutations P1P4, P2P5, and P3P6 would include all alphabet letters.
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clicking Decrypt Message Settings reveals the decrypted message settings for each of the sample
intercepts given in (6). The result of this is shown in Figure 6.

Figure 6: Using the Maplet to analyze encrypted message settings.

In this example, even using a full table of the type created by the Poles, only two combinations of
a rotor order and ground setting resulted in permutations of the same type as P1P4, P2P5, and P3P6.
Indeed, often for the Poles there were only a few such combinations. On some occasions though
there were many, and sometimes several had cycles that matched up favorably and similarly with the
cycles in P1P4, P2P5, and P3P6, making the task of finding the correct one more difficult. A detailed
discussion of the cycle structures in the full table can be found in [1].

5.2 Analyzing Full Messages

To be able to decrypt full messages, the Poles still needed to figure out the ring settings given in the
codebook, which to this point they had assumed to be some common fixed settings. To do this, the
Poles discovered and exploited another mistake made by Enigma operators, specifically that many
of their messages began with the crib TOX (actually, ANX, which would translate from German to
English as TOX, the word “TO” followed by X acting as a space character). Using a message setting
they had already determined though, the Poles could simply search for ring settings from among the
263 = 17,576 possibilities that would decrypt the three letters directly following the sixth as TOX.
Of course, with such a short crib, there were usually multiple ring settings that would decrypt the
three letters directly following the sixth as TOX. However, each could be used in an attempt to
decrypt a message in full, and then when the correct settings were found (i.e., when the full message
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decrypted correctly), the ring settings from the codebook would be known, and could thus be used in
the decryption of every full message intercepted on the same day.

As an example of this that demonstrates another Maplet written by the authors, which is available
for download at the link labeled [S3] in Section 7, from the six-letter sequences given in (6) and
their decrypted companions shown in Figure 6, consider the sequence CHHZZY and its decrypted
companion FABFAB. Suppose also that the rest of the intercepted ciphertext (after the first six letters)
was GCAHNYBCYHELYYDECLUQUVOGKGPLNXQXFPGLDQS, which would thus be known to have
been formed using the message setting FAB, the rotor order R3, R1, R2, and the plugboard connections
B↔ L, D↔ P, F↔ Z, J↔ T, O↔ S, and X↔ Y. The Maplet window in Figure 7 shows, from
among all of the 17,576 possible choices for the ring settings, the only 4 that would cause the first
three encrypted message letters GCA to decrypt as the assumed crib TOX.

Figure 7: Using the Maplet to find ring settings.

Attempting to decrypt the full message using each of these four ring settings, which could be done
using the Maplet demonstrated previously as in Figure 4, would then reveal which are actually correct,
as well as the decrypted message. For example, the Maplet window in Figure 8 shows that the first
choice 1, 8, 1 for the ring settings is not correct.

Figure 8: Using the Maplet to try to decrypt a message.
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The Maplet window in Figure 9 though shows that the third choice 14, 23, 5 for the ring settings is
correct, and that the full plaintext is TOXBEXORXNOTXTOXBEXTHATXISXTHEXQUESTION.

Figure 9: Using the Maplet to decrypt a message.

6 Conclusion

In this paper, we showed how Polish codebreakers led by Marian Rejewski used the mathematics of
permutations to cryptanalyze German communications encrypted using the Enigma machine prior to
World War II. This was demonstrated using Maplets, written by the authors, which are all available as
a single download at [5]. More detailed historical descriptions of the work of the Polish codebreakers
can be found in [1], [2], and [4]. In particular, the human side of the Polish codebreakers is very well
portrayed in [4].

By 1938, Germany had made two additional rotor wirings available for use in their Enigma machines.
This increased the number of possible rotor orders by a factor of 10 (from 3! = 6 to 5 · 4 · 3 = 60),
too many for the Polish method for cryptanalyzing Enigma to be effective. However, British and
American codebreakers led by Alan Turing at Bletchley Park later exploited other weaknesses in their
own successful attack on the more complex machine. A detailed discussion of their efforts can be
found in [3].

7 Supplementary Electronic Materials

[S1] Maplet that simulates the operations of encryption and decryption with an Enigma machine, as
illustrated in Figures 3, 4, 8, and 9:

https://ejmt.mathandtech.org/Contents/v16n1p3/EnigmaMessageEncryptionDecryptionMaplet.mw.
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[S2] Maplet that can be used to form the permutations P1P4, P2P5, and P3P6 from sample intercepts,
and then search a full table of the type created by the Poles, as illustrated in Figures 5 and 6:

https://ejmt.mathandtech.org/Contents/v16n1p3/PolishEnigmaBreakerMaplet.mw.
This Maplet uses and requires the following table:

https://ejmt.mathandtech.org/Contents/v16n1p3/polishtable.mla.
This Maple also uses but does not require the following images:

https://ejmt.mathandtech.org/Contents/v16n1p3/Rejewski.jpg,
https://ejmt.mathandtech.org/Contents/v16n1p3/Rozycki.jpg,
https://ejmt.mathandtech.org/Contents/v16n1p3/Zygalski.jpg.

[S3] Maplet that can be used to find ring settings from sample intercepts and decrypted companions,
as illustrated in Figure 7:

https://ejmt.mathandtech.org/Contents/v16n1p3/FindRingSettingsMaplet.mw.
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